初学者如何做人脸识别算法选型与部署

对于初学者来说,进行算法选型时有几项因素需要重点考虑:精度与效率的平衡;人的面部因化妆、装饰等变化较大;人脸识别底库照的筛选与更新;活体检测对摄像头选型的需求;设备部署中光线与大小角度的干扰。

另外,如果涉及到支付环节,人脸识别算法既需要较高精度,尽量避免误识,又要兼顾高峰期的支付效率,尽量避免拒识,所以算法阈值需要在误识率和拒识率两方面取得平衡。在此推荐虹软视觉开放平台的人脸识别SDK,以免费、离线著称,尤其是近期发布的ArcFace4.1算法精度大幅提升,进一步降低了误识率和拒识率,在相关AI应用上匹配度很高,也被业内多家方案商选用。

其次,需要重点关注人们化妆、配饰等引起的面部变化。由于支付场景下人脸识别的设定阈值较高,面部特征变化可能导致支付失败。面对该情况,用户可定期通过小程序或者公众号号更新人脸识别底库照片,或者将刷脸支付时拍下的照片作为底库照进行更新。

初学者如何做人脸识别算法选型与部

另外,人脸识别底库照注册时需要保证照片质量,可以通过FQ(图像质量检测算法)对底库进行批量筛选,质量不合格的要求学生重新上传。高质量的人脸识别底库将大幅提升识别效率与使用体验,也能避免很多后续问题。市面上具备FQ功能的算法并不多,虹软开放平台的ArcFace4.1是一例。

该功能可以将摄像头拍下的照片进行标准化评估,去除模糊、大角度、逆光、暗光、强光等低质量的人脸图像,从而大幅提升识别速度,也能帮助优化底库人脸照,在上万张照片中快速筛除不合格的注册照,让人脸识别从底库的特征值开始就更加准确。

最后,除了人脸识别以外,活体检测也是支付场景下不可缺少的部分,通过双目摄像头同时进行RGB活体检测和IR活体检测,是兼顾效果与性价比的优良选择。同时,设备部署时需要充分考虑实地场景中外部光线对摄像头的干扰,安装高度也需要考虑学生身高差异,避免大小角度对人脸识别造成过度影响。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商