12月30日消息,近日,奇富科技论文《SFE-Net:利用基因选择性表达的生物学原理改进深度学习网络中的特征选择》(/SFE-Net: Harnessing Biological Principles of Differential Gene Expression for Improved Feature Selection in Deep Learning Networks/)被ICASSP 2025接收。
据悉,ICASSP是全世界最大的、也是最全面的信号处理及其应用方面的顶级学术会议,具有权威、广泛的学界及工业界影响力,备受AI领域研究学者关注。
奇富科技的上述论文是智能语音团队受生物系统中差异基因表达的启发,将选择性特征表达原理引入深度学习架构,提出了一种创新的特征选择性表达网络(Selective Feature Expression Network:SFE-Net)。SFE-Net聚焦于多模态技术在DeepFake(深度伪造)检测中的应用,这一技术有望应用于奇富科技的反欺诈和反黑灰产工作,进一步提升对用户的保护能力。
随着人工智能生成式模型的普及和发展,深度伪造技术日益复杂,应用门槛阶梯式降低,对社会的信任体系、个人隐私和信息真实性造成了严重威胁。传统的机器学习模型通常依赖于静态特征表示,难以适应不同的合成方法。在研究过程中,奇富科技智能语音团队深度分析不同Deepfake算法理论,如FaceSwap、Face2Face等,推导出针对性的深度特征表征。同时SFE-Net能够根据输入的深度伪造特征动态调整特征优先级,选择性地增强关键特征,减少无关或误导性线索的影响,从而有效提高检测准确率。
论文结果表明,SFE-Net超越了目前所有静态模型,同时SFE-Net在跨数据集场景中展现出更强的泛化能力,它在所有测试数据集中平均AUC(AUC越接近1.0,检测准确率越高)也将之前SOTA的0.767大幅提升至0.795。这进一步证明了SFE-Net在综合利用多维特征提取技术进行伪造检测的独特优势,为深度伪造检测任务提供了高效可靠的解决方案。
据介绍,奇富科技研发的 SFE-Net 具备强大普适检测能力,它通过动态调整特征选择策略融合多种特征精准识别深度伪造内容,在跨数据集场景下泛化能力出色,能适应不同平台与多种伪造技术,在多数据集测试中准确率高,可为平台监管和执法部门提供技术支持,助力清理屏蔽虚假信息与精准取证,打击黑灰产业源头,对维护数字内容生态健康意义重大。
- HDC 2025:开发者搭上“鸿蒙快车”,鸿蒙生态加速前行
- HarmonyOS 6开发者Beta正式启动:打造无处不在的AI体验
- 马蜂窝发布夏季“旅行蜂向标”,进山、玩水、拥抱草原是最受关注的夏季玩法
- 饿了么灰测“悦享会员”加码用户体验,提供一系列专属优惠和个性化服务
- 启信宝2025奶茶趣味报告:奶茶企业5年激增140%,40万家共筑3500亿帝国
- 《黑神话:悟空》PS5国行版将于6月18日正式发售,建议零售价268元起
- 报告:2029年美国AI搜索广告支出将达260亿美元,占比13.6%
- 重塑内生安全体系 实现AI时代安全突围 ——2025北京网络安全大会(BCS)开幕
- 覆盖上百国家!启信慧眼全球供应链“风险地图”助力中企安全“出海”
- 门禁凭证技术进化简史:开启更加安全和便利的未来
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。