AI也会有偏见和歧视 IBM建立百万人脸数据希望解决AI偏见

科技中立,但人制造出来的 AI 却可能带有偏见或歧视。AI 偏见情况像是性别歧视、种族歧视,例如面部侦测算法在识别白人时的准确率比识别黑人高许多,男性跟女性类别也存在类似问题,让软件识别犯罪嫌犯人选、企业挑选求职者时,也曾引发歧视问题。

为了减少这方面的偏差,IBM 研究院刚刚打造了一套更加多样化的“百万人脸数据集”。近年来,随着智能手机的普及,面部识别已经在许多领域得到了广泛的运用。然而在一些测试中,某些看似很优秀的 AI,竟然也会败下阵来。

凭借全新的“百万多样性人脸数据集”,AI 开发者将能够充分考虑到多样性的面部特征(DiF)。

为使面部识别能够按照要求执行(既公平又准确),训练用的数据,必须提供足够的平衡和覆盖。

它应该足够大、且多样化,以便了解更多类型的面部固有差异。图像必须反映我们在世界中看到的面部特征的多样性。

<script id="p517107" src="//pdlib.pconline.com.cn/product/service/ls_show_product_item.jsp?id=517107&style=n-o&tagId=p517107&sid=0" defer ></script> 

(免责声明:本网站内容主要来自原创、合作媒体供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )